Exploration of Vehicle Target Detection Method Based on Lightweight YOLOv5 Fusion Background Modeling

نویسندگان

چکیده

Due to the explosive increase per capita in vehicle ownership China brought about by continuous development of economy and society, many negative impacts have arisen, making it necessary establish smart city system that has rapidly developing detection technology as its data acquisition system. This paper proposes a lightweight model based on an improved version YOLOv5 address problem missed false detections caused occlusion during rush hour surveillance videos. The proposed replaces BottleneckCSP structure with Ghostnet prunes network speed up inference. Additionally, Coordinate Attention Mechanism is introduced enhance network’s feature extraction improve recognition ability. Distance-IoU Non-Maximum Suppression issue omission when detecting congested targets. Lastly, combination five-frame differential method VIBE MD-SILBP operators used model’s capabilities for contours. experimental results show outperforms original terms number parameters, inference ability, accuracy applied both expanded UA-DETRAC self-built dataset. Thus, this significant industrial value intelligent traffic systems can effectively indicators monitoring scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Moving Target Detection Method Based on Improved Frame Difference Background Modeling

Background modeling is the key technology for moving target detection implemented with the background difference method. The conventional background modeling methods cost large amount of calculation time, in order to improve the speed and precision of the model, this paper presents an improved Frame Difference Background Modeling. The frame difference background modeling was initialized by Sele...

متن کامل

Vehicle Recognition Based on Multi-scale of Gauss Background Modeling

In the intelligent traffic system, vehicle recognition is always a hot topic. However, because the environment is easily influenced by the light, the weather, the shadow and the noise. It’s difficult to get ideal vehicle segmentation effect. This paper studies the existing background modeling algorithm and proposes a vehicle recognition method based on multi-scale of Gauss background modeling. ...

متن کامل

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

An Algorithm for Moving Vehicle Detection and Tracking Based on Adaptive Background Modeling

In modern traffic surveillance, computer vision methods have commonly been utiliezed to detect vehicles because of the rich information content contained in an image. And detection and tracking of moving vehicle in traffic environment is one of the most important components in intelligent transportation system (ITS). The adaptive background modeling method was used to eliminate the negative eff...

متن کامل

Vehicle Counting without Background Modeling

In general, the vision-based methods for vehicle detection/tracking may face the problems of illumination variation, shadows, or swaying trees. In this study, we propose a novel vehicle detection method without background modeling to overcome the aforementioned problems. First, a modified block-based frame differential method is established to quickly detect the moving vehicles without the infl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13074088